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1. INTRODUCTION

In this Part Il of this series we shall continue the discussion about numerical methods
hyperbolic initial boundary value problems (IBVPSs). This partis devoted to solving one- a
two-dimensional hyperbolisystemsin Section 2, the theory and methodology presente
in Part | [7] are modified to accommodate partially reflecting or absorbing boundary con
tions and to solve the one-dimensional hyperbolic system. As was mentioned in Part [, t
stability in the scalar case does not imply time stability for systems; see [1, 2]. Desy
the fact that for hyperbolic systems we succeeded in proving the time stability only -
some special cases, numerical examples show that the method is effective and provide
stability even when a theoretical foundation is lacking. As in the scalar case, the foul
and sixth-order schemes are used for solving model problems. The formal accurac
each scheme is determined by doing a grid refinement study. The numerical results s
that the convergence rate of the schemes used here agrees well with theory. In ord
investigate numerically whether the schemes are time stable we compute the error for
time integrations and additionally determine the eigenvalue spectrum of the semidisc
system. In all cases, no eigenvalues with a positive real part are found which indicate
time stability of the schemes.

67

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



68 ABARBANEL, CHERTOCK, AND YEFET

As an application where high-order accurate approximations are needed we considk
Section 3 the two-dimensional Maxwell’s equations in free space. The SAT method u:
for the diagonalized system in 1-D is adopted to solve the two-dimensional system, wh
cannot be digonalized. The problem is solved using both the fourth- and the sixth-or
schemes. Numerical results are compared with those obtained by Turkel and Yefet in
6]. They solved the same problem by using the Ty(2,4) scheme, which is a fourth-or
compact implicit difference scheme on staggered meshes.

Section 2 of Part Il was written by the authors of Part |. Section 3 of Part || was writte
in collaboration with A. Yefet.

2. 1-D HYPERBOLIC SYSTEMS

2.1. General Theory and Description of the Method

Consider a first-order hyperbolic system of partial differential equations

au au
— +A— =0, O0<x<1 t=>0, 2.1
ot + dX - = - (21)
where without loss of generality(x, t) = (u*(x, t),...,u" (x,t))" and A is a diagonal
matrix with constant entries:
Al
Ak AM>Ay>--, Ak >0,

Ak+1 Ap <o < Akg2 < Akyr < 0.

Ar
The solution of (2.1) is uniquely determined if we prescribe initial values

ux,0 =fx), 0=<x=<1, (2.2)
and boundary conditions

u'0,t) = Lu" (0, t) + g'(t)
(2.3)
@y =RdALH+g" ), t=>0,

whereL andR are fixed matrices of ordeksx (r —k) and ¢ — k) x k, respectivelyg'(t)
is a givenk-vector,g' (t) is a given ¢ — k)-vector, and

u =@l doT, =W un)T (2.4)
is a partition ofu into its outflow and inflow components, respectively, corresponding t
the partition ofA.

It is well known that (2.3) is well posed for arly and R, but in order to assure that

the solution of (2.1) is bounded in time (whgh(t) andg' (t) are bounded in time), it is
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sufficient to assume that
LRI =<1, (2.5)
where the nonsquare matrix norm is defined by
ILI = p(LTL)Y? (2.6)

andp(LTL) is the spectral radius af" L.

In order to solve the initial-boundary value problem (2.1) by a finite-difference appro
mation, we introduce, as in the scalar case, a mesthsizel denote by’ = (uj, ul, ...,
uiN)T,i =1,...,r, vectors of unknowns corresponding to the grid poirgs..., Xy
(N=1/h) and byv' the numerical approximation g . Assuming that we have the same
matricesP, Q, P, (5 and the the same vecto%, §N as in the scalar case—see Part |—
we approximate the (2.1) by the scheme

dv' - S - .
Paz_,\in' + 2 So(Vp — (LV" + ghp), 1<i=<k

Ny 2.7)
ﬁaZ—)\,iQVi +)\,i§N(ViN—(RVI+g“)iN)9 k+1§| Sr

To prove the convergence of the scheme (2.7) we will derive an equation for the el
function £ and show that its discrete norm (to be defined later) is bounded by a functi
F(t, h, u), wheret, h, andu are the time, the mesh size, and the exact solution, respective
It will be shown that(t, h, u) is bounded in time by a linear growth and tends to zero wit!
mesh refinement.

Sinceuf) — (Lu" +g") =0 for 1<i <k andul, — (RU +g"), =0 fork+1<i <r,
we may write for the vectorg

du

PH=—MQU‘ + 1 So(uy — (Lu" + ghh) + PT', 1<i<k 8)
~ du’ . S _ . ) |
Pd—ut = 40U + 1S (Ul — (R +gi) + BT, kt+l<i<r,

whereT = (TC, ..., TK, T ... T")isther x N long vector of the truncation errors due

to numerical differencing.
Denote bys' =u' — Vi (1 <i <r) the solution error vectors and subtract (2.7) from (2.8
to get

i . - . . .
P(;—gt = -2 Q&' + 1 So(ep — (Le)y) + PT', 1<ic<k
. (2.9)
I . - . . ~ .
5%=—Ai(§s'+AiSN(s}\,—(Re')'N)+PT', k+l<i<r

We define now the scalar product

N
(e, el = Ze:nerjn (2.10)
m=0
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and the discrete norms

k r

le'|” = Z@@i,g), ls" 12 = I i, ety (2.12)

i—1 i=kt1 1Ail

and
IENZ = lle'l1Z + 11" |12, (2.12)

where€ is ther x N long error vector whose firét x N entries are the entires of and
the other(r — k) x N entries are the ones of.
Differentiating the scalar product®¢', ¢') and Pe', ¢') and using Eq. (2.9) yields

9 pe ey = —Ai(Qe' ') +4i(So. ) (eh — (LeMp) + (PT' &),  1<i=<k
dt (2.13)
%(ﬁei,ei) = i (Qe', ") + 2 (S, ) (el — (ReDN) + (PT, e,  k+1l<i<r

We now use the definitions & and Sy, the properties of) and O (from assumption 3
and remarks from Part 1), and the fact that there positive for ki <k and negative for
k+1<i<rtoget

d . . . . o
(P =2i(r - Daoo(eh)? — Aitha(eh)? — Aitqoo(Le" el
— i (Qo1 + Quo)e (Le")h — A [anN (8iN)2 + (On_1n + ONN-1)EN_1EN

Fanoanoa(eh 1)’ + (PT&),  1<i<k
(2.14)

d ~ . . . . L

qr(Pete) = 12l — Dao(el)” — 2ildna (el 1)” — 12 I7oo(Re el
— i 1(Go1 + Guo)el_1 (ReD — [l [QNN(é‘io)z + (On_1n + ONN-1)Ebe]
+qN71N71(€i1)2} +(PT', "), k+1l<i=<r

We multiply the first equation of (2.14) byR||/A; and sum up from =0 to k, and we
multiply the second equation bijL ||/|Ai| and sum up from =k + 1 tor. We then add
these two sums and, assuming that 1n_1 iS positive, the resulting expression may be
written thusly:

k r

d IRI i d ILI 5 i
— N p — =rep
dtz; i’ ( 8,8)+dti:zk;1 I/\il( e e

k
= {n RII(r — Ddoo(eh) — IIRlIzz(e})® — IIRI7qoo(Le" e
i=0

ON-1N T ONN-1

2
R e — ok i A/ -1 _]Ei )
2\/ qN—:N_] N qN N N-—-1

— IRII(do1 + Gho)ey (Le™)y — IR (
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(ON—1N + ONN— 1)2) } IRl i
_IR + PT',
IR (QN PR Z ( g)

+ ) [uLn(r — Daoo(ely)* — ILlIdaa(eh 1) — ILITdoo(ReHyely

i=k+1
2
L1 (Gor + Gro)eky_g (ReDy — IIL | (quj:ﬂ Lol + anoin 181)
(On-1N +qNN—l)2) i 2] Ll P
—L - e)?| + BT,
It (qNN 40N-1N-1 (¢0) iz;l [Ai ] ( £):

Again, as in Part |, we require the expressmmsg 4+ (On—1N + ONN—1)€0€1 + ON st to
be positive for alkg, 1 € R. This implies

2
Ovoiv1 >0, Qun— (On-1n + ONN-1) -0 (2.15)
4qn-1N-1

We next define new discrete scalar products (note the difference from (2.10):

k
[ e'lm =D ehnem
= (2.16)

r
_ i
= EméEm-

i=k+1

Replacing the sums in the last equation with these vector operations and using the prope
of the matriced and P we get an estimate for the discrete naé|,

1
ECoaIISII < (r = Daooll Rille", €'To — IRllauale', &'l — I Rllzcoo[Le", &'To

— BIIRI[E", e'In + (r — DacollLlI[e", &"In — 1L llcuale", e"In-1

k
— ILlizdoo[Re', e"In — BIILII[e", £"]o — 2/IRlldor Y _(eH(Le")g

i=1

—2||L||q012<e” N_1(ReDy +Z (PT' '>+Z |M(PT' e,

i=k+1 i=k+1

where

1 _iN + Onn-1)?
Jo1 = = (Qo1 + Q10), B =0anN — (AN -1 + ANn-1) > 0.
2 AgN-1N-1

Substituting the estimates

[Le", e'To < LI - 1" o le o

[Re', e"In < IIRI - lle'lIn - lle" Iy
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k k k

PG (R =N B S (CO N S (R = [N R Y PRy S

i=1 i=1 i=1
> My a(ReDly < (1) D7 [(RDW® < IR lle - le" s
i=k+1 i=k+1 i=k+1

where

le"lm = VIe", &'lm,
e, = vIe", em  m=0,1,N—1 N,

into the last inequality fofi€|| and collecting like terms yields

1
> dt||5||2<{(f—1)OI00 IR - 1e'I2 — IRIaualle' |2
+|7qool - RN - IL1I - le'llo - 1" Il + 2Idoxl - IR - 1L - [le"fl1 - le" 1o
—BILI- 1" 15} + {(r — Daoo - IRI - le" 1§ — IRNGualle 174
+ Izqool - RN - 1L - 11" [Ty - le" Il + 2l0oal - IRI- ILI - el - e Tz
L .
—BILI- ||N}+Z” e+ Y Mo @

i=k+1 |)L|

We require now each curly bracket to be nonpositive. Thus we need

(t — Do - IR - '3 — IIRNGualle' 1 + Izqool - IIRN - 1L - 11" 1o - 1" 1l
+2/doal - IRI - IL1| - le'lly - lle" llo — BIILI - lle" 15 < 0 (2.18)

and also

(t — Daoo- IRI - 1" 13 — IRNazalle' -1 + [zqool - IRI - LI - 1€ I - lle" I
+2qoal - IR - LI - N Ty - " In_z — BILI - '3 <O (2.19)

forall &', &" e R.

It is possible to show that both inequalities are satisfied (and hence the algorithm is t
stable) if

011 > 0, On-1N-1 > O, (t —D0oo < O,

i F Onn_1)?
B = an — (ON—1N T ONN-1) -0, (2.20)
40N-1N-1

1
Zrzqnqéon RIl - ILI + (z — Ddoo(Bdsr — a3, lIRIl - IL]]) <O

Assuming for the moment that these inequalities hold we can write

IRl i Ll i gl
EC"E”g”—z_: (PT!, )+Izk;lm(PT (2.21)
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Using (2.9) from Part | and the definition (2.11) of the discrete norms we get

1.d _,
500 IEI7 < el THIE] (2.22)
and after dividing byj|&||,
d C1
Sen < . 2.23
g€l = Il (2.23)
leading to
C
IEI < = sup [Tt (2.24)
Co o<r<t

We are ready now to formulate the theorem:

THEOREM2.1. Letthe method defined by EQ.7) satisfy(2.20), for the discretization
of the hyperbolic systeif2.1) with initial and boundary conditiong2.2), (2.3). Then it is
stable and leads to an error whose norm is growing linearly in time.

Remark. We recall that in order to solve the hyperbolic system numerically we use t
same matrice®, Q, P, Q and the same vecto&, Sy as in the scalar case, i.e.,

1 1
Q11=6>0, Jo1 = 3,

Coo = — 3

57

(On—1n +Onn-D)? 1
= — = —= O
£ =ann 40nN-1N-1 6

With this choice of the matrixQ the inequalities (2.20) hold if

1—|IRI- LI -vD 1—|R|- LI ++D

=T=

2[RI AL 2[RI (L ’

(2.25)

where
D=@—|IR[I-IILH@-=S5IRI-NILID.

We can choose, which satisfies (2.25), iD > 0. This happens ifiR| - ||IL|| <1/5. But
this is only a sufficient condition, because numerical experiments (see the discussion ir
next subsection) show that the numerical solution converges to the analytical solution
allt <ocoevenif /5<||R| - |IL|| < 1.

Similarly, in the case of the fourth-order scheme,

B N 1
Qoo = g’ i1 = 8 > 0, Qo1 = 2
(On—in +Oun-1? 1
= — =->0,
B =ann 40N-1N-1 4
leading to
4 —-2|IR|l - IIL]]| —2+/D 4 —-2||R| -|IL 27D
IR L —2vD < IR - IL] +2vD (2.26)

SIRIF- (L SIRIE- (L ’
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where
D=@—|RIl-ILINE@~—6IRI-ILID.

We can findr, which satisfies (2.26), ifR|| - |L || < 1/3. Numerical experiments performed
in the next section show that the fourth-order scheme is time stable ev¢8 4 [IR|| -
ILII<1.

However, if| R - |[L|| < 1/5 in the case of the sixth-order scheme|(B| - |[L|| <1/3in
the case of the fourth-order scheme) then (2.18) and (2.19) are strictly negative and (2
is replaced, just as in Part |, by a constant bound.

2.2. Numerical Experiments

Consider the hyperbolic system

au au
—+A—=0, 0<x<1t>0, (2.27)
ot 0X

where

A:(é _01>, u=(l:), (2.28)

with initial data
ux,0) =sin2rx, v(X,0) = —sin2rx, 0<x<1, (2.29)
and boundary conditions
u,t) =v(0,t), v(l,t)=u(lt), t=>D0. (2.30)
The exact solution is

u(x,t) =sin2r(x —t),
(2.31)
v(X,t) = —sin 27 (X + 1), O<x=<1t>0.

Note that due to (2.30),R]| - ||IL|| = 1 and thus we test the most severe reflection case.

As in the scalar case of Part | we solve the problem (2.27)-(2.30) numerically usi
two different schemes: fourth-order compact with third-order boundary closure and six
order compact with fifth-order boundary closure. And again we compare two methods
implementation of the boundary conditions: (i) conventional, which implies the overwritir
of the value of the solution at the boundary point with the analytic boundary condition af
each Runge—Kutta stage, and (ii) the SAT method described in the previous subsectio
all cases, the standard fourth-order Runge—Kutta method is used for time integration, \
a suitableAt such that the desired overall accuracy is maintafned.

1We did not a use sixth-order Runge—Kutta integrator because we are not aware sifial@sixth-order
Runge—Kutta method suitable for a system of ODEs. However, in the scalar case of Part | we did use a sixth-c
Runge—Kutta method.
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FIG. 1. ThelL,-error as a function of time for the fourth-order approximation using conventional implemer
tation of boundary conditions with CRE£0.5.

Conventional boundary conditionsin Part | it was shown that for the scalar case the
fourth-order scheme is time stable while the sixth-order scheme is not when using ¢
ventional implementation of boundary conditions. Using these schemes to solve the
problem (2.27)—(2.30) we found that neither scheme was time stable when applied to a
tem of equations. Figures 1 and 2 shbyrerror as a function of time for the fourth-order
compact scheme and sixth-order compact scheme, respectively, for different grids. As
can see, results diverge exponentially from the analytic solution.

On the other hand, we shall show that SAT procedure ensures time stability (onl
sublinear temporal growth) for the hyperbolic system, for both the fourth- and the six
order schemes.

SAT boundary conditions.First we verify that SAT implementation of boundary con-
ditions retains the formal accuracy of the spatial operator. Results of the grid converge
study of the spatial operators with SAT parametet 2 for both orders of accuracy are
presented in Table |. The entries are the absolute errgg(og) at a fixed timet =T and
the convergence rate. The convergence rate is computed as

flu—uM|, hy
log < 090 — |, (2.32)
O\ Ju—uhe |, *\ hy
whereu = (U(xg, t), U(Xz, t), ..., u(Xn, t)T is the exact solutioy" is the numerical so-
lution with mesh widtth, and|ju — u|, is the discrete., norm of the absolute error. The
data in this table indicate that the convergence rate asymptotically approaches the the

ical value of 4 for the fourth-order operator and 6 for the sixth-order operator. Figure:
and 4 show the error as a function of time for long time integration using the fourth-orc
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FIG. 2. TheL,-error as a function of time for the sixth-order approximation using conventional implemer
tation of boundary conditions with CF=0.1.

and the sixth-order difference operators, respectively, for different grids. No exponen
growth exists, and both schemes are found to be strictly stable. In Figs. 5 and 6 the eif
value spectrum for both schemes for different grids is shown. One can see that there al
eigenvalues with a positive real part.

3. 2-D HYPERBOLIC SYSTEMS

3.1. Application to Maxwell's Equations

As an application where high-order accurate approximation are needed we cons
Maxwell’s equations. In free space they are given by

TABLE |
Grid Convergence of Two High-Order Schemes foru; + Auy, =0, Using the SAT
Implementation of Boundary Conditions with the SAT ParameterT =2 and CFL = 0.5
for the Fourth-Order Scheme, CFL = 0.1 for the Sixth-Order Scheme T = 10)

Fourth-order compact Sixth-order compact
Grid l0g10(L2) Rate logo(L7) Rate
21 —2.657 —4.371
31 -3.332 3.83 —5.462 6.19
41 —-3.817 3.89 —6.231 6.15
61 —4.506 3.91 —7.299 6.07

81 —4.998 3.94 —8.041 5.97
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FIG. 3. TheL,-error as a function of time for the fourth-order approximation using SAT method for imple
mentation of boundary conditions with=2, CFL=0.5.
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FIG. 4. TheL,-error as a function of time for the sixth-order approximation using SAT method for imple
mentation of boundary conditions with=2, CFL=0.1.
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oB
o +VxE=0 (Faraday’s law,
oD
— —VxH=1J (Ampere’s law,
ot (3.1)
B = uH,
D = €E,
coupled with Gauss’s law
V.-B=0,
(3.2)
V.-D=0.

If we assume perfectly conducting conditions at the outer edge of the domain then
boundary conditions are

nxE=0,
~ (3.3)
n-H=0,
wheren is a normal vector to the surface of the domain.

To simplify the notation we shall consider the two dimensional caseayjthconstants
andJ = 0. We nondimensionalize the variables; cf/L,x=%/L,y=y/L, E=E, H=
J(e/wH, wheree and . are the permittivity and permeability coefficients, in free space
respectivelycisthe speed of light, andis a length of the domain. The 2-D version of system
(3.1), (3.2) decouples into two independent sets of equations. We shall consider the
(transverse magnetic) system in a square dorfain{(x, y) eR?|0<x<1,0<y<1}.
The TM equations then become

0E, oHy 9H

— = , Q,t=>0
ot X ay (*.y) €

H E
LIS (3.4)
at ay
dHy  9E;
at  ax
with the boundary conditions
EZ(O’ y’ t) = EZ(l’ y’ t) = 07 t 2 03
(3.5)
E,(x,0,t) = E;(x,1,t) =0.
We take as initial conditions,
Ez(X, Yy, 0) = sin(w1X) sin(wzy), (X, y) € L,
Hx(X,y,0) =0, (3.6)

Hy(x7 yv 0) = Ov

wherew; =7nandw, =7m (N, m==+1, £2, £3, ...).
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The exact solution is

E;(X, ¥, 1) = sin(w1X) sin(w,y) cogwt),

Hyx(X,y,t) = _2 Sin(w1X) cowyY) sin(wt), (3.7)
w

Hy(X, ¥, 1) = 2 coSw;X) sin(wpy) sin(wt),
w

wherew = \/w% + w%.

The matrix form of the equations (3.4) is

5 E; 00 1 . E; 0 -1 0 E;
Hy 1 00 H, 0O 0 O H,
s [ 5 g [
=A— | Hy | +Ao— | Hyx |, (38)
X ay
Hy Hy
where
0 0 1 0 -1 0
Ai=|(0 0 0]}, A=|-1 0 O
1 0 O 0 0 O

The SAT method for implementation of boundary conditions is used for diagonalized s
tems in one dimension. We encounter a problem when dealing with this two-dimensio
problem, because it is impossible to diagonalize the two matigesnd A, simultane-
ously. To overcome this problem of how to state the boundary conditions we consider
two-dimensional Maxwell’s equations (3.4) in each space dimension independently.
decompose (3.8) into the one-dimensional Maxwell's equations

9 [ E; 0 1\ 0 (E;
ﬁ(Hy> = (1 0) 8_X<Hy>’ (3.9
8 EZ 0 1 a EZ
()093 om

with E, = 0 at the boundaries (see (3.5)), and we denote

0 1
A= (1 0) .
We shall limit our detailed discussion only to Eq. (3.9). The treatment of the equati
(3.10) is similar.

2This decomposition is not, of course, equivalent to the original system (3.8). It is done for lack of a 2
characteristic theory. This practice follows what has been done previously in the context of 2-D gas dynarr
see [4].
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We diagonalize the matriA and change the variables. Lt be a diagonalizing matrix
of A and letA be a diagonal matrix having the eigenvaluedof.e.,

1 . (-1 0
M AM_A_<0 1 (3.11)
and
(-1 1 o 1/-1 1
M_<1 1), M _2<1 1). (3.12)
Equation (3.9) is transformed into
J ru -1 0\ 9 u
ﬁ(v) - ( 0 1) 5(1})’ (313)
where

(u) _mr B 2 (TR
v HX 2 EZ + Hy
The boundary conditions can be written as

u@©,y,t) =v(0,y,t), vl yt)=udy,t). (3.14)
This is equivalent to the requirement Bf = 0 on the boundaries. Note also that (3.14) is
in the form (2.3) withg'(t) =¢" (t) =0 andR=L =1.

We add to the system (3.13) an artificial zero term which is similar to the SAT term f
a one-dimensional hyperbolic system and rewrite it as

3wy (=1 0\ 3 (u a[u@,y, t) —v(0,y, 1]
ﬁ(v) - ( 0 1) &(v) + (ﬂ[v(l, y,t) —u(l,y, t)]) ’ (3.15)

wherea andp are some constants.
When we return to the original variables, i.E5, Hy, we get

O (B} _ a0 (B (o0 Y. D vy, ]
ot \ Hy dx \ Hy Blv(L, y,t) —u@,vy,1)]
8<Ej (—MMQ%U—v@diﬂ+me%U—uadiﬂ>

9% \ Hy [u(0, y, ) — v(0, y, )] + Blv(L . t) — u(L, y, )]
(3.16)

=A

Using the fact that

() =)= ()
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we replace the boundary term&, y, t) — v(0, y, t), v(1, y, t) — u(l, y, t) in (3.16) by the
original variablesE, (0, y, 1), E;(1, y, t).
Thus (3.16) becomes

9 (B _ <O 1) 9 [ E n aE,(0,y, 1) + BE-(L y, 1) (3.17)
at\H, )~ \1 0) x|\ H, —aE,(0,y,1) + BE(L, Yy, 1) | '
We now call attention to the fact that the systems (3.9) and (3.17) are equivalent (see (3
In a similar fashion we get foE,, Hx a system which is equivalent to (3.10):

(B _ <o 1) 3 (E N +aEx(x,0,t) + BEL(X, 1, 1) (3.18)
at\H,/  \1 0/ ay\ Hy aE,(x,0,t) — BE,(x, 1, 1) |~ '
When we approximate the nondiagonalized equations (3.17) and (3.18) numerically by us
the SAT method for implementation of boundary conditions we shall add SAT bounde
terms for both directions, which resemble the artificial zero terms that appear in the equat
(3.17),(3.18). Leinx andAy be mesh widths in the- andy-directions, and divide the axes

into subintervals of lengtiAx and Ay, respectively. For=0, ..., N;yandj =0,..., Ny
we use the notation

EZ” (t) = EZ(Xla yj5t)7 HX” (t) = HX(Xla ijt)7 Hy” (t) = Hy(X|, yjat)a
Xi =i AX, yj = jAy,

whereE;, (1), Hy, (1), andHy, (t) are vector grid functions. We denote &y, hy, , andhy,
the numerical approximations to the projectidig (1), Hy, (t), andHy, (1), respectively.
Without loss of generality we takid = N3 = Ny, i.e., AX = Ay.

Before proceeding to the semidiscrete problem let us define

Dy = P10, Dy = P1Q, (3.19)

where(N + 1) x (N + 1) matricesP, Q andP, O are the same matrices used to solve the
hyperbolic system in the one-dimensional case and described in detail in Part | and in
We note that in practic® ! and P! are never evaluated. Rather, the decompositiea

LU and P=LU is calculated once for each matrix.andU (L andU) are bidiagonal
matrices with one of them having “ones” along the diagonal. Hence, the invetsarmd

U (L andU) is very cheap (two additions and three multiples per point).

Let [e,], [hy], and [hy] be the(N + 1) x (N + 1) matrices with the elements, , hy;,
andhy, , respectively, and denote bg[%, [h«]F, and hy]R the jth row of each of these
matrices and byg;]¢, [h«]€, and hy]€ theith column of each of these matrices.

We now write the semidiscrete approximation to (3.17) as

d ORI o
a[ez];? = Dx[hy]? - Pil(SOezoi + SNezNj),

q (3.20)
a[hy]:R = Dx[ez];:Q - ﬁil(_é)eZoj + éNez,\,j),
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and the semidiscrete approximation to (3.18) as

d - -
a[ez]iC = _[hx]iCD;/r + Pfl(soezo + SNeZiN)’
(3.21)
d - -
el = —[e7 Dy + P~} (Soess — Suesn),

where the(N + 1) long vectorséN and éo are exactly the same vectors as in the one
dimensional case, i.e.,

T0oo 0
(Clo1 + G10) ;
S = 0 ., Su= 0 . (3.22)
: —(Qo1 + 010)
0 —T0oo

We now compose the two one-dimensional systems into the two-dimensional set
approximate the equations (3.8) in the following way:

d o o~ - -
a[ez] = Dy[hy] — ([ez]gsg + [eZ](r\:ISIJ) Pil_[hx] D; + Pil(SO[ez]ga"' SN[ez]ﬁ)
& 1h = —[edD] + P(Sledf - Suledf) (3.23)

d o o n
gt = Duled - (~[e§ S +[edFSN) P

3.2. Maxwell's Equations: Numerical Simulations

The problem (3.4), (3.5), (3.7) was solved using both the fourth-order scheme and
sixth-order scheme. The boundary conditions are imposed using the SAT algorithm
scribed above. In all cases, the temporal advance is via the standard fourth-order Ru
Kutta method. The time step is chosen small enough to ensure the local stability of
Runge—Kutta method and retain the desired overall accuracy (see footnote 1). The sin
tions were all run to equivalent times =100 for both the fourth- and the sixth-order
schemes and different grid$N = N; = N, =20, 40, 80). We chose CF=1/10, 7 =2
for the fourth-order scheme and CH.1/15,t = 2 for the sixth-order scheme. In Figs. 7-9
the logp of the L, error is computed for both schemes and different grids. As one can s
the error grows linearly in time; no exponential growth exists, indicating temporal stabili
of the schemes. Figure 11 shows the&eomponent of the numerical solution at tifie= 2
obtained by using the sixth-order scheme with= 80,7 = 2.

Unlike previous sections, where we compared two procedures for imposing of bound
conditions (the conventional procedure and the SAT procedure), in this section we s
compare our results with the results obtained by Turkel and Yefet; see [5, 6]. They sol
the same problem by using the Ty(2,4) scheme, which is a fourth-order compactimplicit
ference scheme on staggered meshes. For time integration they used the staggered le:
method. The Ty(2,4) algorithm was run fir= 20, CFL=1/18; N =40, 80, CFL=1/44.



84 ABARBANEL, CHERTOCK, AND YEFET
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FIG. 7. TheL,-error as a function of time for the SAT fourth-order approximation with GL&1, T =2,
w1 =37, w, =47, w=57. N =20, 80.
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FIG. 8. The L,-error as a function of time for the SAT fourth-order approximation with GRL.1, r =2,
w1 =31, w, =41, w=57. N=40.
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FIG. 9. ThelL,-error as a function of time for the SAT sixth-order approximation with GFL/15,7 =2,
@y, =3m, w, =47, w="5r. N =20, 40, 80.
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FIG. 10. The L,-error as a function of time for the Ty(2,4) fourth-order approximation fo& 20:
CFL=1/18; for N =40, 80: CFL=1/44.w, =37, w, =47, w =5m.
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FIG.11. e, component of the numerical solutiont= 2 obtained using the SAT sixth-order approximation
with N =80, CFL=1/15,t =2, w; =37, w, =47, w =5m.

The logy of the L, error, obtained by using the Ty(2,4) fourth-order scheme, is plotted |
Fig. 10. Note that the Ty algorithm was run with a time stap, almost 2 times smaller
for N =20 and almost %times smaller foN =40, 80 than one used for the fourth-order
SAT scheme. It should also be observed that the results obtained by using the SAT sche
and presented in Figs. 7-9 are printed evatystep while the results obtained by using
the Ty(2,4) scheme and presented in Fig. 10 are printed evéiypAt) steps (i.e., only
1000 points are printed, in contrast to about 20,000-80,000 points for our printc
graphs).

In order to check on the order of accuracy, the runs were repeatéd forN; = N, = 20,
40, 80). Table Il shows a grid refinement study for all three spatial operators. The abso
error logo(L ) at a fixed time =T and the convergence rate between two grids are plo
ted. The results in this table agree very well with the predicted ones for fourth and si.
order. We note than the error obtained by using the Ty(2,4) fourth-order scheme is smz
than the error in SAT fourth-order scheme, but the SAT sixth-order scheme outperfor
both.

TABLE Il
Grid Convergence of Schemes for the Two-Dimensional Maxwell Equations

Ty(2,4) fourth-order SAT fourth-order SAT sixth-order
Grid logio(L>) Rate logo(L>) Rate logo(L>) Rate
21 —2.677 —2.644 —3.580
41 —4.234 5.17 —4.089 4.80 —5.416 6.10
81 -5.751 5.03 —5.326 411 —7.261 6.13

Note. T=10, w; = 37, w, =47, w = 57. Here CFL=1/10 for the SAT fourth-order scheme and CEL
1/15 for the SAT sixth-order scheme. For Ty(2,8)=20, CFL=1/18; N =40, 80, CFL=1/44.
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4. CONCLUDING REMARKS

In this Part Il of this series, the methodology presented in Part | was used to sc
one- and two-dimensional hyperbolic systems. Analytical proof of time stability for on
dimensional hyperbolic systems was obtained for a restricted class of problems, nar
when L] - ||R]| <1/5 for the sixth-order accurate scheme dnd| - ||R|| < 1/3 for the
fourth-order scheme. However, it has been numerically verified, by both measuring
error for long time integrations and determining the eigenvalue spectrum of the semidisc
system, that the method was effective and provided time stability even when a theore
foundation was lacking. We have shown application in the most severe ddsi- §R|| = 1.

The numerical experiments were concluded by solving the two-dimensional Maxwe
equations in free space. The SAT method used for solving diagonalized systems in
dimension was adopted to solve a hondiagonalizable two-dimensional system. Nume
results obtained by using both fourth- and sixth-order SAT schemes were compared \
the results yielded by the fourth-order Ty(2,4) scheme derived by Turkel and Yefet in [5,
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